Difference between revisions of "TS-7970 Specifications"

From Technologic Systems Manuals
Jump to: navigation, search
(Temperature Specifications)
(Power Specifications: Clarifications)
 
(One intermediate revision by one user not shown)
Line 1: Line 1:
 
== Power Specifications ==
 
== Power Specifications ==
The TS-7970 includes 2 methods for powering the board.  There is a 5V input, and a 8-28V input.  Only one of these should be provided to the board.
+
The TS-7970 supports two methods for power input.  There are separate 5 V and 8-28 V inputs.  Only one of these may be provided to the at any time; supplying both inputs may cause damage to the TS-7970 or power supplies.
  
 
{| class=wikitable
 
{| class=wikitable
Line 8: Line 8:
 
! Max voltage
 
! Max voltage
 
|-
 
|-
| 5V input
+
| 5 V input
| 4.75
+
| 4.75 V
| 5.25
+
| 5.25 V
 
|-
 
|-
| 8-28V Input
+
| 8-28 V Input
| 8.00
+
| 8.00 V
| 28.00
+
| 28.00 V
 
|}
 
|}
  
Line 121: Line 121:
 
! IO
 
! IO
 
! Typical Range
 
! Typical Range
! Absolute Range
+
! Absolute Max
! Logic Low
+
! VIL Max<ref>Maximum input voltage that will trigger a logic low</ref>
! Logic high
+
! VIH Min<ref>Minimum input voltage that will trigger a logic high</ref>
 
! Drive strength
 
! Drive strength
 
|-
 
|-
 
| External CPU GPIO
 
| External CPU GPIO
| 0-3.3V
+
| 0-3.3 V
| -0.5V to [[#Rail Specifications|3.3V Rail]] + 0.3V
+
| -0.5-3.6 V
| 0.3 * [[#Rail Specifications|3.3V Rail]]
+
| 0.99 V
| 0.7 * [[#Rail Specifications|3.3V Rail]]
+
| 2.31 V
| 27.5mA
+
| 27.5 mA
 
|-
 
|-
 
| External FPGA GPIO
 
| External FPGA GPIO
| 0.3.3V
+
| 0-3.3 V
| -0.5-3.75V
+
| -0.5-3.75 V
| 0.8
+
| 0.8 V
| 2.0
+
| 2.0 V
| 12mA
+
| 12 mA
 
|}
 
|}
  

Latest revision as of 11:51, 2 December 2019

Contents

1 Power Specifications

The TS-7970 supports two methods for power input. There are separate 5 V and 8-28 V inputs. Only one of these may be provided to the at any time; supplying both inputs may cause damage to the TS-7970 or power supplies.

Input Min voltage Max voltage
5 V input 4.75 V 5.25 V
8-28 V Input 8.00 V 28.00 V

2 Power Consumption

The i.MX6 power consumption can vary a lot depending on the build and activity of the board. Most of the power savings happens automatically when the CPU and GPU are idle. It is also possible to disable the Ethernet PHY for extra savings.

# Put ETH PHY in reset
echo 116 > /sys/class/gpio/export
echo high > /sys/class/gpio/gpio116/direction
 
# Put USB HUB in reset
echo 43 > /sys/class/gpio/export
echo low > /sys/class/gpio/gpio43/direction

Ethernet is not connected unless otherwise specified. Serial is disconnected during the measurement. The CPU test is 5x processes of "openssl speed". The GPU test is Qt5CinematicExperience in the Yocto image.

These tests are performed powering the board through 5V.

TS-7970 solo without WIFI or I210
Test Max Watts Average Watts
CPU 100% + GPU loaded (LCD 100%) + IO + Ethernet + HDMI 4.50 (0.90 A) 3.40 (0.68 A)
CPU 100% 2.80 (0.56 A) 2.35 (0.47 A)
CPU Idle + HDMI 2.75 (0.55 A) 2.05 (0.41 A)
CPU Idle + CPU Ethernet 2.75 (0.55 A) 2.20 (0.44 A)
CPU Idle 2.50 (0.50 A) 1.95 (0.39 A)
CPU Idle USB HUB off 2.75 (0.55 A) 1.95 (0.39 A)
CPU Idle USB HUB off, Ethernet PHY in reset 2.15 (0.43 A) 1.60 (0.32 A)
Using onboard uC to sleep CPU 0.025 (125 mA) 0.015 (3 mA)
TS-7970 quad core with WIFI and I210
Test Max Watts Average Watts
CPU 100% + GPU loaded (LCD 100%) + IO + Ethernet + HDMI 10.80 (2.16 A) 7.75 (1.55 A)
CPU 100% 6.15 (1.23 A) 5.40 (1.08 A)
CPU Idle + HDMI 4.55 (0.91 A) 2.90 (0.58 A)
CPU Idle + WIFI on wpa2 running iperf 6.85 (1.37 A) 3.95 (0.79 a)
CPU Idle + CPU Ethernet 5.00 (1.00 A) 3.10 (0.62 A)
CPU Idle + PCIe Ethernet 3.60 (0.72 A) 2.85 (0.57 A)
CPU Idle 4.85 (0.97 A) 2.80 (0.56 A)
CPU Idle USB HUB off 3.50 (0.70 A) 2.75 (0.55 A)
CPU Idle USB HUB off, Ethernet PHY in reset 3.30 (0.66 A) 2.40 (0.48 A)
Using onboard uC to sleep CPU 0.025 (125 mA) 0.015 (3 mA)

3 Temperature Specifications

The i.MX6 CPUs we provide off the shelf are either a solo industrial, or quad core extended temperature. The TS-7970 is designed using industrial components that will support -40C to 85C operation, but the CPU is rated to a max junction temperature rather than an ambient temperature. We expect the solo to work to 80C ambient while idle with a heatsink and open air circulation. To reach higher temperatures with this or other variants of this CPU some custom passive or active cooling may be required.

Model Number Operating Min Cooling Temp [1] Passive Temp [2] Critical/Max Junction Temp [3]
TS-7970-*S8S* -40C 75C 85C 105C
TS-7970-*Q10S* -20C 75C 85C 100C
  1. CPU stops all throttling below this temperature
  2. CPU begins throttling until the cooling temperature
  3. CPU Max temperature. Linux will shut down to cool in u-boot at this temperature.

Our test data can be used to estimate the temperature rise of the CPU over the ambient temperature. These are tested without an enclosure in open air. The temp ranges show the CPU at idle at the low end, to a very high system load at the high end.

Configuration Temp rise over ambient
Solo No Heatsink 21-27C
Solo with HS-50x53x13 18-20C
Quad No Heatsink 16-50C
Quad with HS-50x53x13 10-23C

For custom builds these are also exposed in /sys/:

# Passive
cat /sys/devices/virtual/thermal/thermal_zone0/trip_point_0_temp
# Critical
cat /sys/devices/virtual/thermal/thermal_zone0/trip_point_1_temp

The current CPU die temp can be read with:

cat /sys/devices/virtual/thermal/thermal_zone0/temp

When the CPU heats up past the cooling temp on a first boot, it will take no action. Heating up past the passive temperature the kernel will cool down the CPU by reducing clocks. This will show a kernel message:

[  158.454693] System is too hot. GPU3D will work at 1/64 clock.

If it cools back down below the cooling temperature it will spin back up the clocks.

[  394.082161] Hot alarm is canceled. GPU3D clock will return to 64/64

If it continues heating to the critical temperature it will overheat and reboot. Booting back up u-boot will block the boot until the temperature has been reduced to the Cooling Temp+5C. This will be shown on boot with:

U-Boot 2015.04-07857-g486fa69 (Jun 03 2016 - 12:04:30)

CPU:   Freescale i.MX6SOLO rev1.1 at 792 MHz
CPU Temperature is 105 C, too hot to boot, waiting...
CPU Temperature is 102 C, too hot to boot, waiting...
CPU Temperature is 99 C, too hot to boot, waiting...
CPU Temperature is 90 C, too hot to boot, waiting...
CPU Temperature is 86 C, too hot to boot, waiting...
CPU Temperature is 84 C, too hot to boot, waiting...
CPU Temperature is 80 C, too hot to boot, waiting...
CPU Temperature is 80 C, too hot to boot, waiting...
CPU Temperature is 80 C, too hot to boot, waiting...
CPU:   Temperature 78 C
Reset cause: WDOG
Board: TS-7970

These temperature tests show the TS-7970 with/without both the heatsink and enclosure. The HS-15x15x5 test data is provided as an example of a smaller heatsink, but this heatsink is not recommended for the TS-7970.

Temp Testing without enclosure

Temp Testing with enclosure

4 IO Specifications

The GPIO external to the board are all nominally 3.3V, but will vary depending on if they are CPU/FPGA pins.

The CPU pins can be adjusted in software and will have initial values in the device tree. This lets you adjust the drive strength, and pull strength of the IO. See the device tree for your kernel for further details on a specific IO.

The FPGA IO cannot be adjusted further in software.

IO Typical Range Absolute Max VIL Max[1] VIH Min[2] Drive strength
External CPU GPIO 0-3.3 V -0.5-3.6 V 0.99 V 2.31 V 27.5 mA
External FPGA GPIO 0-3.3 V -0.5-3.75 V 0.8 V 2.0 V 12 mA
  1. Maximum input voltage that will trigger a logic low
  2. Minimum input voltage that will trigger a logic high

Refer to the MachXO Family Datasheet for more detail on the FPGA IO. Refer to the CPU quad or solo datasheet for further details on the CPU IO.

WARNING: Do not drive any IO from an external supply until 3.3V is up on the board. Doing so can violate the power sequencing of the board causing failures.

5 Rail Specifications

The TS-7970 generates all rails from either the 8-28VDC input, or the 5V input. This table does not document every rail. This will only cover those that can provide power to an external header for use in an application.

Direct 5V input will bypass our regulator, but the absolute max a supply can provide 5A to the board.

Rail Current Available Location
3.3V 200mA [1] HD1 pin 23, HD2 pin 23, mPCIe, HD3 pin 3
5V Quad core 2A, Solo 3A [2] HD1 pins 15/16, HD3 pin 6, USB, mPCIe
  1. Contact us if you need more on this rail
  2. These limitations are only relevant if 8-28V is supplied into the board.